Lecture 23: Hadron Collider Physics (II)

Nov 15, 2015

Include slides on Top taken from Gianluca Petrillo's talk at Moriond 2013

Reminder: Cross Sections at Hadron Colliders

- Rates determined by
 - Hard Scattering Cross Section
 - ► Parton luminosity
- QCD processes dominate
 - EW rates lower by α/α_S
- Main background for W and Z production: QCD jets
- Almost impossible to see single $W \to q \overline{q}'$ or $Z \to q \overline{q}$ above jet background
 - UA2 managed to do this with special trigger and very large background
 - But almost all studies of W and Z in hadron colliders in leptonic decay modes

$$W^{\pm} \rightarrow \ell^{-} \nu_{\ell} \ \ell^{+} \overline{\nu}_{\ell}$$

Production of W and Z Bosons

- Lowest order diagram: quark annihilation
- \bullet At lowest order, W and Z are produced with no p_T

Full QCD Calculation: Boson p_T Remains Small

Distribution dominated by multiple soft gluon emission

Reconstruction of Z Bosons

- In general, limited to leptonic modes
 - ► Large QCD jet background swamps signal in jet channel
 - ► In principle, can find regions of phase space where hadronic mode can be reconstructed, but in very specialized analyses with other objects
 - ightharpoonup Two high p_T leptons, nearly back-to-back
 - ► Reconstruction straightforward, background small

Reconstruction of W Bosons

- Again, restricted to lepton channels
- But here, one of the nearly back-to-back leptons is a neutrino
 How do we "detect" a particle that doesn't interact in our detetor?
- \bullet Look for momentum imbalance and assign the missing momentum to the ν

But in hadron colliders, limited to using only the 2 transverse components of the momentum

Neutrino Reconstruction

- Must add the momentum of all objects in the event
- The traditional way: calorimeter only

- Create a grid of calorimeter towers
- Treat each tower as a massless particle with momentum direction normal to the tower
- For better resolution: Use reconstructed objects
 - ▶ Combine the momentum of all the jets and electrons, muons
 - ▶ Then add the remaining unused energy using towers as above
 - ▶ When combining, can have different calibrations to each object

A Comment on Resolution

Calorimeter resolution depends on energy deposited

$$\sigma_{/E_T} \propto \sqrt{\sum E_T}$$

- Measurement is also sensitive to detector cracks and noise
- Degrades with pileup

W Decay: Lepton p_T Distribution

• In CM frame, e and ν are back-to-back and balance p_T :

$$p_T^2 = \frac{1}{4}\hat{s}\sin^2\theta$$

• Changing variables from $\cos \theta$ to p_T introduces a Jacobean:

$$\frac{d\cos\theta}{dp_T^2} = -\frac{2}{\hat{s}\cos\theta}$$

But we know

$$\frac{d\sigma}{d\cos\theta} \propto \left(1 + \cos^2\theta\right)$$

SO

$$\frac{d\sigma}{dp_T^2} \propto \frac{(1+\cos^2\theta)}{\hat{s}\cos\theta} \propto \frac{2\left(1-2p_T^2/\hat{s}\right)}{\hat{s}\left(1-4p_T^2/\hat{s}\right)^{\frac{1}{2}}}$$

The Jacobean Peak

Notice

$$\frac{d\sigma}{dp_T} \propto \frac{1 + \cos^2 \theta}{\cos \theta}$$

Diverges for $\theta=\pi/2$ (which is $p_T=\sqrt{\hat{s}}/2$)

- ullet Diverence results from the Jacobean factor in tranformation to p_T
- Integration over Breit-Wigner removes singularity but leaves the peak
- ullet HO corrections give W transverse momentum and further smear the peak

Transverse Mass

- W p_T gives ℓ and ν by same boost
- Define ℓ - ν transverse mass:

$$m_T^2 = (E_T^{\ell} + E_T^{\nu})^2 - (\bar{p}_T^{\ell} + \bar{p}_T^{\nu})^2$$

- Note that for $p_T^W=0$, $m_T=2|p_T^\ell|=2|p_T^\nu|$
- Thus

$$\frac{d\sigma}{dm_T^2} = 4\frac{d\sigma}{dp_T^2}$$

- ullet m_T sensitive to transverse boosts only at second order
 - Predicted m_T distributuion not very sensitive to modeling of boson p_T
- \bullet But m_T more sensitive to detector resolution since depends on measurement of the ν

Transverse Mass for W Bosons

- ullet Background small in both e and μ channels
- ullet Small theoretical uncertainties: a better choice of variable than lepton p_T in most cases

Top-Pair Production

- ullet Strong production: $tar{t}$ pairs
- Tevatron: $(p\overline{p} \text{ collder})$
 - ▶ Production rate suppressed: $2m_{top} \sim 0.2\sqrt{s}$
 - ▶ 15% gg, 85% $q\overline{1}$
- LHC: (pp collider)
 - ▶ Production rate larger $2m_{top} \sim 0.05\sqrt{s}$
 - ► 90% *gg*, 10% *q* \overline{q}

Single Top Production Through EW Processes

- \bullet Characterize as "s-channel", "t-channel"," W+t
- t-channel is the largest contribution, s-channel the smallest
- More difficult to isolate than the strong pair production
- ullet Will concentrate on tar t production for most of today, but will return to this process towards the end of the lecture

Top Decay Signatures ($t\bar{t}$ Production)

- $t \to Wb$ BR $\sim 100\%$ in SM (V_{tb})
- Top lifetime $\sim 5 \times 10^{-25}$ sec Decays before hadronization
- Top Pair production gives:

Top Pair Branching Fractions

Top Reconstruction: The Basics

- ullet Top pairs yield 6 high p_T objects
- Separate search strategies for dilepton, single lepton and all hadronic channels
 - lacktriangle Dilepton clean, but 2ν 's so full mass reconstruction not possible
 - ► Single lepton: Good S:B. The golden channel
 - ► All-hadronic: Must separate from very large QCD multijet background: possible with *b*-tagging, but difficult to get a pure signal

Top Analysis Strategy

- Goal: Maximumize top signal while reducing QCD background
- ullet Top decay products central and at high p_T
 - ▶ Typical Tevatron cuts: $p_T > 15 \text{ GeV}$
 - ▶ Typical LHC cuts: $p_T > 25$ GeV
- ullet Di- and single lepton channels have missing E_T
 - ▶ Define $H_T = \sum_i E_T$ where sum is over reconstructed objects
- Two b-jets in final state: identification of b's greatly reduced background rate

Jets Produced from b-quarks

- Characteristics of *B* decays':
 - ► B lifetime long
 - Semileptonic BR 10% per species
- Two methods of b-tagging
 - Displaced vertex tag
 - "Soft" leptons inside jets
- Today, multivariant techniques combine all information into a single metric

Reconstructing Top in Single Lepton Channel

- Sample contains lepton, missing energy and ≥ 4 jets (additional jets from initial or final state radiation)
 - ightharpoonup 2 jets reconstruct to W mass
 - $\ell + \nu$ reconstruct to W mass (must use transverse mass since p_z^{ν} not measured)
 - ▶ 2 jets are *b*-jets
 - ▶ Each W + b reconstructs to a top
- Many possible combinations of objects possible
 - ► Can apply constraints to pick the best combinatorial choice
 - Or can use all choices, weighting with probability
- ullet Signal can be observed without b-tagging if high H_T cut applied
- But b-tagging reduces combinatorial background

With b-tagging, Top dominated sample was selected at the Tevatron

At LHC, large, clean samples available

- Above require single b-tagged jet
- Right hand plot after kinematic likelihood fit and requirement of at least 4 jets

Top Pair Cross Section

- Good agreement with pQCD predictions
- Important since top a major background to BSM searches

The measurements of top mass goes through some common steps:

- **assign a likelihood for each event,** function of the top mass: $L_i(m_t;...)$
- 2 maximize a global likelihood $L(m_t; ...) = \prod_{i \in \text{events}} L_i(m_t; ...)$, including all the events, to extract the m_t estimator
- calibrate to remove any bias of the method

Calibration curve of m_t from CDF measurement from 8.7 fb⁻¹ in $\not\in_T$ +jets

- our analyses are calibrated on Monte Carlo simulation
- \Rightarrow we measure m_t with the definition implemented in MC!
- the precision of the experimental measurements helps the interpretation of this parameter (cfr. PRD 80, 071102 (2009))

Matrix Element method exploits the full topology of the event:

$$P(x, m_t) = \frac{1}{\sigma(m_t)} \int \sum_{\text{flavours}} f(q_1) f(q_2) \sigma(y, m_t) \mathcal{W}(x, y) dq_1 dq_2 dy$$

scattering matrix element (in σ) for a final-state parton configuration "y" (including 4-momenta of all the 6 final state particles)

probability $f(q_{1/2})$ of having a specific initial state (*Parton Distribution Functions*)

probability W of reconstructing the scattering final state "y" as our measured jets/lepton objects "x" (*Transfer Functions*)

Templates method interprets the distribution of one or more observables sensitive to m_t as probability densities:

- distributions are extracted from full detector simulation
- correlations between observables can be included
- up to three observables used

m_t template (CDF measurement from 5.8 fb⁻¹ in all-hadronic final state)

 m_t vs. m_{jj} template (m_t =171.5 GeV/ c^2) from CDF measurement from 8.7 fb⁻¹ in ℓ ±jets _

- in some final states, W boson can be fully reconstructed
- \Rightarrow constrain a m_W estimator with the known W mass
 - "nuisance parameter" Δ_{JES} is measured, describing an additional global scale of jet energy

 m_{jj} template (CDF measurement from 5.8 fb⁻¹ in all-hadronic final state, m_{i} =172.5 GeV/ c^{2}) = $\sqrt{2}$

0.02

Top Mass Measurement Summary

- ullet Good agreement between experiments for direct measurement of m_{top}
- ullet m_{top} derived from cross section consistent with direct measurements

Why does m_{top} matter?

- ullet m_W depends quadratically on m_{top} and logrithmically on m_{Higgs}
- Would also be sensitive to other BSM particles with moderate mass
- Before Higgs discovered, gave prediction for its mass
- Now, can constrain possible BSM physics

Single Top Production

Using Top to Search for New Physics

